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Recently I. J. Schoenberg studied the cardinal splines that interpolate the
function AX at the integers, where Ais a complex number. This paper deals with
cardinal splines which together with their successive derivatives interpolate AX
and its successive derivatives at the integers.

INTRODUCTION

Let n. r be positive integers such that n :;?: 2r - 1. The class Y'n.r ofcardinal
splines of degree n with integer knots of multiplicity r consists of the func~

tions Sex) such that Sex) is a polynomial of degree n in each of the intervals
[v. v + 1] (v = O. ±1, ±2,...) andS(x) E cn-r(-co, co).

In an interesting paper [4] Schoenberg studied the cardinal splines Sn(x; ,\),
called the exponential Euler splines, that interpolate the function ,\'" at the
integers, where ,\ is a complex number (see also [7]). These exponential Euler
splines Sn(x;'\) are extremely useful (see [5. 7]). It turns out that Sn(x; ,\)
are "periodic extensions" of the exponential Euler polynomials Aix;'\)
introduced by Euler [1]. These polynomials are generated by the relation

,\ - 1 e"'Z = I An(x; ,\) zn.
,\ - eZ n~O n!

The essential properties of An(x; A) are given in [4].
This paper deals with cardinal splines SnAx;'\) E ~.r which together

with their successive derivatives interpolate the function ,\'" and its successive
derivatives at the integers, i.e.•

S~~(v) = ,.\v(log"\Y (p = O. 1•... , r - 1) Vintegers. (2)

In Section 1 we introduce the polynomials An.r.S<x; A) from which the
splines Sn.r,s{x;'\) are constructed in Section 2. The representations of
Sn.r.S<x; ,\) in terms of B-splines are given in Section 3. In Section 4 we study
the behavior of Sn.r(x;"\) as n tends to infinity. and in the last section we
give a complete proof of the convergence theorem for the case r = 2.
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1. THE POLYNOMIAL An.r.S<x; ,\)

Let s = 0, 1,... , r - 1 be a fixed integer and set

An.r.s(x; ,\)
AiO; ,\)

n!
An_l(O; ,\)
(n - I)!

An-l(O; ,\)
(n - I)!

An_ 2(0; ,\) ...
(n - 2)!

An-sH(O; ,\)
(n-s+I)!

An_s(O; ,\)
(n - s)!

An(x; ,\)
n!

An-l(x; ,\)
(n - I)!

An-rH(O;'\) An-r(O; ,\)
(n - r + I)! (n - r)!

An-r~s+2(O; ,\) An-rH(x; ,\)
(n - r - s + 2)! (n - r + I)!

A n - s- 1(0; ,\)
(n-s-I)!
A n - s- 2(0; ,\)
(n - s - 2)!

An_rH(O; ,\)
(n-r+I)!

An_r(O; ,\)
(n - r)! (1.1)

An-r-s(O; ,\) ... An- 2r+2(O; ,\)
(n-r-s)! (n-2r+2)!

where AnCx; ,\) are the exponential Euler polynomials. From the relation
An'(x; '\)/n! = An_l(x; '\)/(n - I)! it is easy to see that

where Hr(an) denotes the Hankel determinant of order r given by

an an- 1 '" 0n-r+1
an- 1 a"-2'" a,,-r· .· .· .

Using the relation

where

C I ! 2! ... (r - 1)!
(n, r) = -n7:'!(-n-_~I)c-;-!-.-.. -':o(n----'-r--'-+----:-;1)7!

(1.2)

(1.3)

(see [3]), it follows that

A(s) (0''\) = (_I)[r/2]+(r-l)(n-r+1) C(n, r) IIn.rC,\) (1.4)
n.r.s , (,\ _ 1)n-r+1 '
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where IInC>") = (A - l)n An(O; A). Further, from the properties A~)(1; A) =
AA:;'W; A) (p = 0, 1,... , n - 1), it is easy to check that An.r..{x; A) satisfy
the relations

A~~.s{l; ,\) = '\A~~.s(O; ,\) (p = 0, 1, ... , n - r), (1.5)

A(O) (1''\) = A(o) (0''\) = 0n.r.s , n.r,s , (p = 0, 1, ... , r - 1, p oF s), j
(1.6)

provided ,\ oF 1 and ,\ is not a zero of IIn,r('\), an assumption which we shall
impose throughout this paper.

2. THE EXPONENTIAL HERMITE-EULER SPLINES Sn.r(x;'\)

Let us define a function Sn.r..{x; ,\) (s = 0, 1,... , r - 1) such that

Sn.r.sCx; ,\) = An.r.sCx; ,\)/Hr(An(O; A)/n!)

Sn,r,s(x + 1; ,\) = '\Sn.r.sCx; ,\)

(O ~ x ~ 1) I
(2.1)

If real x.

It follows from (1.5) and (1.6) that Sn.r"<x) E cn- r(- 00, 00) and

S~~.b, A) = ° (p = 0, 1, ... , r - 1, p oF s),

(v = 0, ±1, ±2,...),

(2.2)

so that it is cardinal spline belonging to the class

g'~s.)r = {Sex) E g'n,r : S(o)(v) = 0 If integers, p = 0, 1,... , r - 1, p oF s}.

When r = 1 (in which case s = 0), Sn.l.o(X;'\) = Sn(x; A) are the
exponential Euler splines considered by Schoenberg [4].

Now, set
r-l

Sn,rCx; ,\) = I (log ,\)s Sn.r.sCx; ,\)
s~o

(XE R). (2.3)

The following theorem is an easy consequence of (2.2).

THEOREM 2.1. The spline functions Sn.rCx; A) belong to .Y:,r and satisfy
the interpolatory conditions

(p = 0, 1,... , r - 1) for all v = 0, ±1, ±2,... ,
(2.4)
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3. REPRESENTATION OF S2m-l,r,.(X; A) IN TERMS OF B-SPLlNES

The B-splines for cardinal Hermite interpolation, denoted by N.(x)
(s = 0, 1,... , r - 1), were introduced by Schoenberg and Sharma [6]. These
B-splines belong to the spaces 9"~%_l.r, have support in (-(m - r + 1),
(m - r + 1», and satisfy the interpolatory properties

(v = -em - r), ... , (m - r»,

otherwise,
(3.1)

where Cvare the coefficients ofthe monic reciprocal polynomial II2m-l.rCA) =
2m-2r \

Lv~o Cv_(m_r)/lv.
It was shown in [2] that the 'polynomial component of the spline

s! A(m-r) L:oo AvN.(x - v) in [0, 1] is given explicitly by the determinant

XS ( ~ ) ... (1 - A) 0 ... 0 ° °
x r ( ~ ) (, ~ 1)(1 - ,\) ° 0

xr+1 (' i 1) (1 - A) 0 ... 0

em - r - l ) °x 2m- r-1 1 1 ................. (l - A)

(
2m-2)

2m-r-l

(
2m-I)

2m-r-1
(3.2)

By an argument similar to that in [2], using the properties (1.5) and (1.6),
it can be shown that the polynomial

s! II2m-1.rCA) A2m-l.r.s(x; A)
H r (A 2m- 1(0; '\)j(2m - 1!» (x E [0, 1])

is also given by (3.2), provided A is not a zero of II2m-l.rCA). Hence

1 f ,\(m-r)+vN (x - v) (x E [0, 1]).
II2m-l.r('\) -00 s (3.3)

From (2.1) and (3.3) we easily deduce the following
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THEOREM 3.1. The exponential Hermite-Euler spline S2m-lor,s(X; A) is
expressible in terms of the B-spline N.(x) by

1 ""
S2m-l.r,.(X; A) = n (A) L AvN.(x + (m - r) - v). (3.4)

2m-l.r 00

4. CONVERGENCE OF EXPONENTIAL HERMITE-EuLER SPLINES

When r = 1, Schoenberg [4] proved that 1imn~"" Sn(x; A) ->- AX uniformly
for x belonging to a finite interval, if A is a nonnegative complex number.
In general we have the following result.

THEOREM 4.1. If A is a complex number which is not of sign (-1)', then

(p = 0, 1,2,... , r - 1). (4.1)

uniformly for x belonging to a finite interval.

The results of the above theorem follow from the corresponding results
for the functions Sn,r,.(x; A). In order to state the latter results we write
A = I AI eia and Ak = log I A[ + i(a + 27Tk) (k = 0, ±1, ±2,...). In [4]
it was shown that the exponential Euler polynomial An(x; A) has the following
expansion.

(4.2)
-0)

If we define a numerical sequence {fJ-k} (k = 0, 1, 2, ...) by

fJ-o = Ao , fJ-1 = A-I' fJ-2 = AI' fJ-3 = A_2 , fJ-4 = A2 , ... , (4.3)

and the corresponding sequence of functions {Uk(X)} (k = 0, 1,2, ) by

uo(x) = 1, u1(x) = e-21Tix, u2(x) = e21Tix, u3(x) = e-21T2iX, , (4.4)

then (4.2) can be written as

""An(x; A)jn! = (A - 1) A-lAx I Uk(X)jfJ-~+1.
o

(4.5)

Next, we introduce the notation V (ao , a1 ,... , ar-1) to stand for the
Vandermonte determinant

ao a 2 r-1
0 ao

a1 a 2 r-1
V(ao , a1 ,... , ar-l) = 1 a1 (4.6)

ar- 1 a~_l
r--l

ar-1
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and let V.(ao , a1 , .•• , ar - 1 ; u(x)) (s = 0, 1,... , r - 1) be the determinants
obtained from (4.6) by replacing the sth column by the column vector
(uo(x), u1(x), u2(x), ... , ur _ 1(x)y. For each s = 0, 1,... , r - 1, define

(4.7)

The behavior of the exponential Hermite-Euler splines Sn,r..(x; A) as
n -+- CIJ is described by the foIlowing

THEOREM 4.2. Let A = I A I eirx• The following relation holds uniformly
for x belonging to afinite interval:

lim S(p) (x' A) = A..(p)(x· A)n.r.s, Y"s,
n->oo

(p = 0, 1,... , r - 1) (4.8)

for -7T < IX < 7T when r is odd, andfor°< IX < 27T when r is even.

The proofs of Theorem 4.1 and 4.2 involve tedious determinantal mani­
pulations. We shaIl give a complete proof only for the case r = 2.

5. CONVERGENCE FOR THE CASE r = 2

When r = 2, the results of Theorem 4.2 can be expressed in a simple form
in terms of the functions

More precisely we have

f3(x) = A'" - (log A) IX(X).

(5.1)

(5.2)

THEOREM 5.1. Let A = I A I eirx• If °< IX < 27T, the following relations
hold uniformly for all x belonging to finite interval:

and

(p = 0, 1),

(p = 0, 1).

(5.3)

(5.4)

Clearly, the results of Theorem 4.1 for the case r = 2 follow from (5.3)
and (5.4). A proof of Theorem 5.1 depends on the following lemma.
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LEMMA 5.2. Let A = I AI eie< and Ak = log I A I + i(o: + 27Tk). The
following relations hold uniformly for all x in [0, 1]:

(-7T < 0: ~ 7T),

(-7T < 0: < 0),

(5.5)

(5.6)

= (A - 1) A-1A"'e-21Tix(-27Ti) (0 < 0'. ~ 7T). (5.7)

Proof Using the expansion (4.2) we have

00

A~+1An(x; A)/n! = (A - 1) A-lAX L e21Tik"'(Ao/Ak)n+l. (5.8)

Since I Ao I < I Ak [ Vk =1= 0, (5.5) follows from (5.8). Also from (4.2) we
have

A~+1{An_1(X; A)/(n - I)! - AoAn(x; A)/n!}

= (A - 1) A-1A'" L (Ak - Ao)(A1/Ak)n+1e21Tik"'. (5.9)
k,<O

If -7T < 0'. < 0, I Al I < I Ak I Vk oF 0, 1, and (5.6) follows from (5.9). The
limit (5.7) is proved in the same way. I

Proofof Theorem 5.1. We shall prove only the relation

(5.10)

The rest are proved in the same way.
We can write

A~+1A~t1A n •2•0(x; A)

I
A~+1An(x; A)/n!

= A~tt{An-1(X; A)/(n - I)! - AoAn(x; A)/n!}

A~+1An_1(0; A)/(n - I)! I
A~t1{An_2(0; A)/(n - 2)! - AoAn-1(0; A)/(n - I)!} .

IfO < 0: ~ 7T, it follows from (5.5) and (5.7) that
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Hence from (2.1) and (5.11) we have

~~ Sn.2.0(X; A) = A"'(A_1 - AOe-21Ti"')/(A_1 - Ao)

= A"'{1 - (log A)(1 - e-21Ti"')/27Ti}

Similarly,

(0 < IX ~ 7T). (5.12)

lim Sn 2 o(x; A) = A"'{1 + (log A)(1 - e21Ti"')/27Ti}
n-+oo ••

= A"'e21Ti"'{l - (log A + 27Ti)(1 - e-21Ti"')/27Ti}

(-7T < IX < 0).

Combining (5.12) and (5.13) we obtain

(5.13)

lim Sn 2 o(x; A) = A"'{1 - (log A)(1 - e-21Ti"')/27Ti} (5.14)
n-+oo ••

when A = I A I eio: for 0 < IX < 27T, from which (5.10) follows. I
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